Emergence of sensory selection mechanisms in
Artificial Life simulations
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Abstract—The evolutionary advantages of selective attention
are unclear. It has been suggested that the nervous system only
processes the most relevant stimuli because of its limited capacity.
We tested this theory by creating Artificial Life simulations
in which artificial animals had neural networks of different
processing capacities. To survive and reproduce, the animals had
to identify two stimuli whose relevances could be the same or
different. When relevances were the same, the animals processed
only one or both stimuli depending on their processing capacity.
When relevances were different, the most relevant stimuli were
usually processed with a higher detectability than the least
relevant stimuli, regardless of processing capacity. Selection
mechanisms and the ability to shift the focus of sensory processing
arose in evolution depending both on the stimuli’s relevances and
the animals’ processing capacity.

Index Terms—Selective attention, Artificial Life, genetic algo-
rithms, Signal Detection Theory, evolution

I. INTRODUCTION

Only a small fraction of the stimuli collected by our
sensory receptors is fully processed and becomes conscious.
Our nervous system is always focusing its resources on the
processing of some stimuli and inhibiting the processing of
others, an ability called selective attention [1], [2], [3]. The
stimuli selected for processing are the most relevant. For
example, in a noisy and crowded cocktail party, we are able
to concentrate on a single conversation while ignoring all the
distracting noises—the so called “cocktail effect” [4].

A. Limited Capacity

Since the study of selective attention began, it has been
proposed that the selection of sensory stimuli is necessary
because the nervous system has a limited amount of com-
putational resources to process them [5]. Whenever a sensory
processing module is working at its full capacity, selection
mechanisms are activated to control the flow of information
and make sure that high-priority stimuli are processed [6]. It
was even suggested that “if the brain had infinite capacity
for information processing, there would be little need for
attentional mechanisms” [7]. Based on these ideas, studies
have been trying to identify the limiting stages in sensory
processing. It was first proposed that selection occurs at the
early stages (the early selection theory) [5], [8]. First the basic
physical characteristics of all stimuli are extracted, then this
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information is used to make the selection. For a stimulus to
be further processed until the late stages of semantic analysis,
selective attention is necessary. Thus this theory predicts that
unattended stimuli are not identified.

However, studies suggest that sometimes unattended stimuli
are identified [9]. To explain these findings, it was proposed
that sensory processing does not go through any limited stage
until semantic analysis and can be performed in parallel (the
late selection theory). Selection only occurs later, after all
the stimuli have been identified. This theory also states that
early sensory processing is involuntary, i.e., not identifying a
stimulus is impossible [10], [11]. However, the late selection
theory is inconsistent with experiments that show that the
analysis of unattended stimuli is reduced when the number
of stimuli is increased [12]. Given that neither the early
selection nor the early selection theory could fully explain
experimental data, conciliatory proposals were made; for in-
stance, Treisman [8] proposed that unattended information is
not completely inhibited, but just degraded or attenuated.

Nevertheless, according to all of the theories above, it
is the nervous system’s limited capacity that makes selec-
tive attention necessary. They differ only on the location of
the “bottleneck™: if it is early, during the analysis of basic
physical characteristics, or late, after the stage of semantical
analysis [13]. But attention focus on what is relevant for
the organism and, in order to determine what is important,
some processing is necessary. If selection is made early in
the process, it is not clear how the nervous system is able to
select what is relevant. On the other hand, if selection is made
only after the stimuli have been processed to an advanced
stage, it is easy to determine what is relevant but selection is
not necessary anymore, because resources have already been
wasted on the processing of irrelevant information [13], [14].

B. Relevance for Action

Not all theories approach selective attention as a solution for
a limited capacity problem. Allport [15] proposed that action
planning requires the inhibition of irrelevant stimuli, which
forces the nervous system to limit its processing. According
to this theory, called “selection-for-action,” it is the need for
selection that causes the limitation, not the opposite. Sensory



processing is limited to relevant stimuli for action to be
coherent, based only on relevant information.

Dayan, Kakade, and Montague [16] give an example of a
classical conditioning experiment in which selective attention
is important for action control and the notion of limited ca-
pacity can be abandoned as redundant. Classical conditioning
is the learning of predictive relationships between stimuli: an
animal learns what a conditioned stimulus predicts about an
unconditioned stimulus. For instance, a laboratory rat learns
that soon after a blue light is turned on, a food pellet is
delivered. In the natural environment, few stimuli have a
predictive value. Dayan, Kakade, and Montague proposed a
statistical model that exemplifies how selective attention can be
an advantage when different stimuli have different predictive
values. According to their model, when a conditioned stimulus
doesn’t allow an animal to make reliable predictions about the
unconditioned stimulus, it must be suppressed so that it won’t
affect the animal’s decisions. Thus if a rat learns that a green
light is turned on and off regardless of food delivery, it will
not pay attention to this light when estimating the timing of
food delivery. What happens is a form of selective attention
that isn’t caused by limited capacity but by the need for action
control.

Although the inhibition of irrelevant stimuli appears to be
necessary for action control, most methods of detecting the
effects of selective attention in experiments rely on the subject
failing to notice an stimulus or taking longer to respond to an
unattended stimulus. All of these suggest that subjects would
achive a better performance in the experiment if they could
process more stimuli at once, but they can’t because of limited
capacity.

C. Artificial Life

It was by natural evolution that all cognitive processes arose
in animal history, therefore an evolutionary approach might
provide aditional clues to clarify the role of selective attention.
One method that makes possible to model the evolution of
the nervous system over many generations in a short time
is Artificial Life. Artificial Life is the study of life-like
behavior in computers, machines and other alternative media.
Many Artificial Life experiments are computer simulations
of artificial animals. To simulate cognitive processes, these
animals have neural networks, which receive sensory stimuli
from their environment and control their behavior.

The process of natural evolution can also be simulated
with a genetic algorithm. Each artificial animal has a genome
and reproduces according to how adapted they are to their
environment. In studies of Artificial Life applied to cognitive
neuroscience, the genome usually determines the structure of
the animal’s neural network. If each gene represents a synapse
between two neurons, genetic algorithms can be seen as a
learning algorithm for neural networks. Learning in neural
networks is usually associated with synaptic changes [17].
Even though an artificial animal’s neural network might re-
main unchanged during its life, by means of mutations and
other genetic operators, the neural networks in a simulation

are gradually optimized for survival. A genetic algorithm could
be able to focus the network’s computational resources on the
selective processing of a stimulus, in a way analogous to an
attentional shift.

Selective attention is already being investigated with Artifi-
cial Life [18], [19], [20]. Bartolomeo et al [18] developed an
Artificial Life simulation to study the evolutionary emergence
of a central region of greater visual acuity in an animal’s
visual field (a “fovea”), depending on its neural network’s
processing capacity. They observed that animals with larger
neural networks had good visual acuity in either the central
and the peripheral regions of the visual field, while animals
with smaller neural networks had good visual acuity only in
the central region. When the latter animals had to identify
a periferic stimulus, they orientated their bodies so as to
centralize (“foveate”) the stimulus in their visual field. These
authors see the orientation movements as an embodiment of
attentional processes (attention shifts) and conclude that their
study is an evidence for the theory that selection arose to
compensate for our nervous system’s limited capacity.

Seth [20] came to a different conclusion by observing
the emergence of behaviors similar to those associated to
selective attention as a result of action control mechanisms.
In his simulation, artificial animals had a nervous system
consisting of direct links between receptors and two wheels;
the receptors detected water, food, and traps in the environment
and wheels moved the animal. They also had food and water
“batteries” connected to the wheels by links. To survive and
reproduce, they had to keep their batteries from running out
and avoid traps. The wheel speed was determined by the sum
of the links’ outputs, which were themselves determined by
their input and genetic parameters. At each generation, these
parameters evolved so that the animals’ actions became more
coherent with their survival needs. Seth observed that the
animals with the highest fitnesses exhibited behaviors related
to action selection and selective attention, such as giving
priority to behaviors according to their needs, opportunistic
behavior, interruption of current behavior etc. For instance,
when an animal was positioned next to a food source, it went
towards it. If a trap was suddenly introduced between the
animal and the food, it usually changed its course to avoid the
trap, but still got closer to the food source. The frequency with
which the animal avoided the trap depended on its food battery
level. With low food levels, the animal was unable to avoid
the trap. This was interpreted as “variable attention.” When the
animal needed food, it seemed to “pay less attention” to traps.
Because in the model there are no interconnections between
receptors and effectors, the phenomena of action selection and
selective attention are equivalent. According to the author,
these results suggest that these two problems are the same.
But the animals’ behavior of falling into the trap in the above
example is not adaptive. Maybe they would have been able
to avoid the trap if they had more processing units; after all,
they might have a limited capacity problem.

The conflicting results obtained in these two experiments
do not allow us to reach a conclusion. Our capacity seems



to be limited and we can’t pay attention to many things at
once. Regardless, the ability to keep the focus on relevant
stimuli and block distractors from consciousness seems to be
an advantage. In this study, we aim to shed more light on this
question by following the evolution of artificial animals with
or without limited capacity and by varying stimuli’s relevances
for action.

II. METHODS

In our Artificial Life simulations, artificial animals lived for
500 time units. At each time unit, they were presented two
objects, which could be of two types: “food” or “non-food.”
The animals could choose whether to eat both objects, only
one of them, or none of them, and their fitness (a measure of
adaptation) changed with each object they ate. The objects had
values, which were added to the fitness when the object was
eaten; the food objects had positive values and the non-food
objects had negative values. Not eating any objects would keep
their fitness at the same level.

The two objects shall be referred to as the “left” and the
“right” objects, because they were presented at these locations
in the animals’ visual fields and stimulated different input
nodes in the animals’ neural networks. The neural networks
had two input nodes, one for each object: the left input node
received a stimulus that represented the left object and the
right input node received a stimulus that represented the right
object. Two output nodes determined if the animal would eat
each of the presented objects: the left output node determined
if the animal would eat the left object and the right output
node determined if the animal would eat the right object.

Besides having input and output nodes, the neural networks
also had a variable number of hidden nodes, which determined
whether or not it had enough capacity for processing the two
stimuli. The evolutionary relevances of the left and the right
objects could also vary depending on how they affected fitness
when ingested. We compared sensory processing in animals
with or without limited capacity, which evolved in simulations
in which the objects had the same or different relevances.

If selection is a solution for a problem of limited capacity,
we expect that selection will emerge only in artificial popula-
tions wherein the animals had limited capacity.

A. Neural networks

The animals had feedforward, totally connected neural net-
works with two linear input nodes, whose output was the same
as their input, a variable number of hidden nodes, and two
output nodes. Each input node was stimulated with a number
from the interval [—1, 1), which indicated a food object if the
number was also an element of the interval [—0.3,0.3) and
a non-food object otherwise. Each hidden or output node j
was a simple perceptron, whose output S; was given by the
equation

Sj = tanh(5(b; + > w;iS:)) (1)

i=1
wherein b; is the node bias, S; is the output of the presynaptic
node ¢ and wy; is the weight of the synapse between node 4

and node j. The output of the network’s two output nodes
determined whether the animal ate the two objects. If the left
node’s output S; was greater than zero, the animal ate the left
object; otherwise, that object was not eaten. The same rule
was applied to the right output node and object.

Each node bias and each synaptic weight was determined
by the animals’ chromosomes. The synaptic weights were
constant during an animal’s life (no learning), but could change
through mutation and crossover through generations.

B. Simulation Sets

In several simulation sets, we studied the effect of two
factors on the emergence of selection mechanisms: the number
of hidden nodes in the neural networks and the stimuli’s
relevances for action (Table I). The number of hidden nodes
could be two or eight. Two hidden nodes are not sufficient for
the correct identification of both stimuli all the time. These
animals had to process only one stimulus or both of them
partially; these neural networks had limited capacity. Neural
networks with eight hidden nodes had the capacity to correctly
identify both stimuli all of the time; these animals didn’t have
limited capacity.

In fact four hidden nodes are enough for the identification
of both stimuli because the hidden nodes and the output nodes
are perceptrons: they separate their input by a hyperplane into
two categories. Two hidden nodes are necessary to identify
a stimulus: one node to classify as greater than —0.3 or not
and another node to classify it as greater than 0.3 or not.
Thus it becomes possible to identify a food object, which was
represented by a stimulus from the interval [—0.3,0.3). This
is the only way an output node can respond in a different way
to food and non-food objects. The left and the right stimuli
had to be processed by different nodes if they were to be
correctly identified, because the two stimuli were independent.
As there are two objects to be identified, a neural network
would then need four hidden nodes, two for each object. In
fact we were able to manually design such a neural network
with four hidden nodes that was able to correctly identify the
two objects at all times.

Besides the number of hidden nodes, the stimuli’s rel-
evances for action could vary across simulation sets. The
relevances of the left and the right stimuli were defined by how
an animal’s fitness changed when the animal ate the objects
they represented when the objects were food. The left and the
right stimuli had the same relevance when the fitness increased
by the same value when either a left or a right food object was
eaten. The stimuli had different relevances when the fitness
increased more when a left food object was eaten than when
a right one was eaten.

The simulation sets had names such as “2-9-3": the first
number was the number of hidden nodes in the neural network
(2 in this example), the second number was the initial value
of left food objects (9 in this example), and the third number
was the initial value of right food objects (3 in this example).
In the second half of the simulation, the values of right and
left food objects were swapped. Each simulation were run for



Simulation Sets
Variables 2-6-6 8-6-6 293 893 2-11-1 8-11-1
Number of hidden nodes 2 2 8 2 8
Initial value of left food 6 9 9 11 11
Initial value of right food 6 3 3 1 1
Value of left non-food -3 -3 -3 -3 -3
Value of right non-food -3 -3 -3 -3 -3
TABLE I

SIX SETS OF SIMULATIONS WERE PERFORMED, VARYING THE STIMULI’S RELEVANCES AND THE NUMBER OF HIDDEN NODES IN THE NEURAL NETWORK.

40,000 generations, so during the first 20,000 the left food
objects were more valuable than the right food objects and
in the last 20,000 generations, the right food objects became
more valuable than the left food objects. All the non-food
objects always had the same value of -3, regardless of their
location.

Every simulation set consisted of ten simulations. They were
identical except for the first generation of chromosomes, which
were randomly generated. We wanted to see if the results
would be consistent within a simulation set, which would
indicate that the differences between simulation sets were due
to different parameters instead of historical accidents during
the course of the simulations.

C. Evolution

The evolution of neural networks was simulated with a
genetic algorithm. Each animal lived for 500 time units and
their fitnesses were computed during their lives according
to the number of food and non-food objects they ate. Their
chromosomes were a vector of real numbers drawn from the
interval [—1, 1), which determined their neural networks’
biases and synaptic weights. There were a gene for each node
bias and a gene for each synaptic weight.

During each simulation, 10 populations of 20 individuals
evolved in parallel for 40,000 generations. To create a new
population from the previous one, 5 individuals with the
highest fitnesses were copied to the next generation with-
out modification. The other 15 individuals of a population
were generated by sexual reproduction with mutation (the
rate of mutation was .05 per gene; a mutated gene was
drawn randomly with uniform distribution from the interval
[-1, 1)) and crossover (each gene had the same probability
of coming from each parent’s chromosome). The probability
of an individual’s being selected for reproduction was given
by its fitness: the higher the fitness, the higher the probability
of generating a descendant. To this end, a selection-by-rank
genetic algorithm was used. The selection-by-rank algorithm
sorted the individuals by fitness and attributed a rank of 20 to
the fittest individual, 19 to the next fittest individual and so
on. The probability of selecting an individual for reproduction
was directly proportional to its rank. At each 200 generations,
the individual with the highest fitness of a population migrated
to a randomly selected population, always keeping the number
of individuals of all populations constant.

D. Signal Detection Theory

To learn how these animals processed the left and the right
stimuli, methods from the signal detection theory were used.
The signal detection theory studies detection experiments,
in which weak stimuli must be distinguished from a noisy
background [21]. In the simplest case, only one stimulus is
present and the sensory component of a subject’s performance
is described by the detectability, or d’. Detectability is a
function of the hit rate, the ratio of trials where the subject
detects the signal and the signal is present, and the false alarm
rate, the ratio of trials where the subject detects the signal but
the signal is not present. Its definition is:

d =2(H)— 2(F) 2)

where H is the hit rate, F' is the false alarm rate and z is the
inverse of the normal distribution function. A high detectability
results from detecting the signal when it is present and not
detecting it when it is not present. By analyzing the d’ of
neural networks, it was possible to determine which stimuli
the networks processed and correctly identified.

The hit and the false alarm rates were calculated for the
animals as follows. A hundred stimuli evenly distributed in
the interval [—1, 1) were generated, then combined in pairs,
generating every possible pair of stimuli (totaling 10,000
pairs), and the pairs were used as input to the neural network’s
two input nodes. The neural network’s response to each pair
of stimulus was recorded and the hits and the false alarms
were counted for the left and the the right objects separately.
When an animal ate a food object, this was a hit. When the
animal ate a non-food object, this was a false alarm. Then d’
was calculated for the left and right stimuli.

III. RESULTS

In the first two simulation sets, all stimuli were equally
relevant. The difference was in the number of hidden nodes in
the neural networks (two or eight). The d’s of the simulation
set 2-6-6’s last generation are displayed in Figure 1. About
half of the animals had a high d' for the left stimuli and
a zero d' for the right stimuli. The other half had a high
d’ for the right stimuli and a zero d’ for the left stimuli.
This result was expected, because these animals had only two
hidden nodes in their neural networks and they were unable
to identify both stimuli correctly all of the time. They could
only identify one of them. As all stimuli were equally relevant
for action, both animals that processed only the left stimuli
and animals that processed only the right stimuli evolved. The
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animals of simulation set 8-6-6 were able to identify both
stimuli correctly, because they didn’t have limited capacity.
The d’ evolution during simulation set 8-6-6 is shown in Figure
4.

In simulation sets wherein the stimuli were of different
relevances, the result could not be predicted based on the
capacity of neural networks alone. All animals with only two
hidden nodes evolved the ability to identify only one of the
stimuli (Figures 2 and 3). But the animals that had eight hidden
neurons also achieved a higher d’ for the most relevant stimuli
than for the least relevant ones (Figures 5 and 6).

IV. DISCUSSION

Theoretically, we had been able to demonstrate that neural
networks with only two hidden nodes wouldn’t be able to
identify two objects correctly all the time. No simulations were
needed to know that these animals wouldn’t achieve a high d’
for both stimuli—it would have been impossible. Which stimuli
were initially processed and which were initially ignored
depended on their relevances. When the left stimuli were the
most relevant, they were processed. When both stimuli had
the same relevances, two distinct subpopulation arose, which
processed only the left or only the right stimuli. They had
something akin to hemispatial neglect in biological animals.
When the stimuli’s relevances were swapped in generation
20,000, the networks in 2-9-3 kept on processing the left
stimuli, even though they weren’t the most relevant ones
anymore. They were less plastic than the networks in 2-11-
1, which were able to change which stimuli were processed
back to the most relevant ones.

Some of the other simulations had unpredicted results.
Based on the theory of limited capacity, we predicted that
in simulation sets 8-9-3 and 8-11-1, animals would be able
to identify both stimuli correctly, because they had enough
capacity to process all their input. But while the d’ for the
left stimuli, which were initially the most relevant, reached
its maximum value in a few generations, the d’ for the right
stimuli rose slowly and didn’t reach as high a value. When the
relevances were swapped, the d’ for the left stimuli actually
decreased. The larger networks were more plastic than the
smaller networks, because the d’ for the right stimuli increased
in both simulation set 8-9-3 and 8-11-1 when the relevances
were swapped in generation 20,000.

The processing of right stimuli was reduced not only when
the neural networks had limited capacity, but also when those
stimuli had little relevance. A higher d’' for the right stimuli
wasn’t an important evolutionary advantage and mutations that
improved their processing frequently got lost during repro-
duction. With enough capacity for information processing,
there may have been little need for selection, but there is
also little need for circuits capable of identifying less relevant
stimuli. With little selective pressure, complex structures don’t
evolve. Animals are selected for their actions and perception
is important only when it affects action. Infinite capacity for
information processing wouldn’t be any use without the ability
to turn this information into adaptive action. For instance, a

mouse wouldn’t take any advantage from paying attention to
the sound of humans talking if it doesn’t have the ability
to understand language and act on this understanding. New
mechanisms for information processing can only coevolve
with the ability to make better decisions based on this in-
formation. If a set of stimuli is completely irrelevant, there
is no evolutionary pressure to process them and all animals
have the same expected fitness regardless what their neural
networks do with these stimuli. Then, according to the theory
of evolution, no structure to process them can arise except by
chance.

Our results couldn’t have been predicted by the theory of
selection-for-action either, because the processing of the right
stimuli didn’t have to be inhibited for action. Only the nodes
that processed the left stimuli had to inhibit the right stimuli
to generate adaptive action, because the right stimuli didn’t
carry any information about the left objects. The remaining
nodes, which were not necessary to process the left stimuli,
were free to process the right stimuli.

V. CONCLUSION

Selections mechanisms arose in our simulations depending
on the size of the neuron networks but also on the stimuli’s
relevances for action. Our model is very simple, but it led
us to consider selective attention from an evolutionary point
of view and reach a different conclusion than what has been
reported in literature. This evolutionary point of view might
be Artifical Life’s greatest contribution to biology.
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